Trait typenum::type_operators::Gcd  
source · [−]pub trait Gcd<Rhs> {
    type Output;
}Expand description
A type operator that computes the greatest common divisor of Self and Rhs.
Example
use typenum::{Gcd, Unsigned, U12, U8};
assert_eq!(<U12 as Gcd<U8>>::Output::to_i32(), 4);Required Associated Types
Implementors
sourceimpl<U1, U2> Gcd<NInt<U2>> for NInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
 
impl<U1, U2> Gcd<NInt<U2>> for NInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
sourceimpl<U1, U2> Gcd<NInt<U2>> for PInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
 
impl<U1, U2> Gcd<NInt<U2>> for PInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
sourceimpl<U1, U2> Gcd<PInt<U2>> for NInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
 
impl<U1, U2> Gcd<PInt<U2>> for NInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
sourceimpl<U1, U2> Gcd<PInt<U2>> for PInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
 
impl<U1, U2> Gcd<PInt<U2>> for PInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero, 
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0> where
    Xp: Gcd<Yp>,
    UInt<Xp, B0>: NonZero,
    UInt<Yp, B0>: NonZero, 
 
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0> where
    Xp: Gcd<Yp>,
    UInt<Xp, B0>: NonZero,
    UInt<Yp, B0>: NonZero, 
gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1> where
    UInt<Xp, B1>: Gcd<Yp>,
    UInt<Yp, B0>: NonZero, 
 
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1> where
    UInt<Xp, B1>: Gcd<Yp>,
    UInt<Yp, B0>: NonZero, 
gcd(x, y) = gcd(x, y/2) if x odd and y even
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0> where
    Xp: Gcd<UInt<Yp, B1>>,
    UInt<Xp, B0>: NonZero, 
 
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0> where
    Xp: Gcd<UInt<Yp, B1>>,
    UInt<Xp, B0>: NonZero, 
gcd(x, y) = gcd(x/2, y) if x even and y odd
sourceimpl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1> where
    UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
    UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
    Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
    Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>, 
 
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1> where
    UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
    UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
    Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
    Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>, 
gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd
This will immediately invoke the case for x even and y odd because the difference of two odd numbers is an even number.