1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
use crate::error::Error;
use crate::from_row::FromRow;
use crate::sqlite::connection::{execute, ConnectionState};
use crate::sqlite::type_info::DataType;
use crate::sqlite::SqliteTypeInfo;
use crate::HashMap;
use std::str::from_utf8;

// affinity
const SQLITE_AFF_NONE: u8 = 0x40; /* '@' */
const SQLITE_AFF_BLOB: u8 = 0x41; /* 'A' */
const SQLITE_AFF_TEXT: u8 = 0x42; /* 'B' */
const SQLITE_AFF_NUMERIC: u8 = 0x43; /* 'C' */
const SQLITE_AFF_INTEGER: u8 = 0x44; /* 'D' */
const SQLITE_AFF_REAL: u8 = 0x45; /* 'E' */

// opcodes
const OP_INIT: &str = "Init";
const OP_GOTO: &str = "Goto";
const OP_DECR_JUMP_ZERO: &str = "DecrJumpZero";
const OP_ELSE_EQ: &str = "ElseEq";
const OP_EQ: &str = "Eq";
const OP_END_COROUTINE: &str = "EndCoroutine";
const OP_FILTER: &str = "Filter";
const OP_FK_IF_ZERO: &str = "FkIfZero";
const OP_FOUND: &str = "Found";
const OP_GE: &str = "Ge";
const OP_GO_SUB: &str = "Gosub";
const OP_GT: &str = "Gt";
const OP_IDX_GE: &str = "IdxGE";
const OP_IDX_GT: &str = "IdxGT";
const OP_IDX_LE: &str = "IdxLE";
const OP_IDX_LT: &str = "IdxLT";
const OP_IF: &str = "If";
const OP_IF_NO_HOPE: &str = "IfNoHope";
const OP_IF_NOT: &str = "IfNot";
const OP_IF_NOT_OPEN: &str = "IfNotOpen";
const OP_IF_NOT_ZERO: &str = "IfNotZero";
const OP_IF_NULL_ROW: &str = "IfNullRow";
const OP_IF_POS: &str = "IfPos";
const OP_IF_SMALLER: &str = "IfSmaller";
const OP_INCR_VACUUM: &str = "IncrVacuum";
const OP_INIT_COROUTINE: &str = "InitCoroutine";
const OP_IS_NULL: &str = "IsNull";
const OP_IS_NULL_OR_TYPE: &str = "IsNullOrType";
const OP_LAST: &str = "Last";
const OP_LE: &str = "Le";
const OP_LT: &str = "Lt";
const OP_MUST_BE_INT: &str = "MustBeInt";
const OP_NE: &str = "Ne";
const OP_NEXT: &str = "Next";
const OP_NO_CONFLICT: &str = "NoConflict";
const OP_NOT_EXISTS: &str = "NotExists";
const OP_NOT_NULL: &str = "NotNull";
const OP_ONCE: &str = "Once";
const OP_PREV: &str = "Prev";
const OP_PROGRAM: &str = "Program";
const OP_RETURN: &str = "Return";
const OP_REWIND: &str = "Rewind";
const OP_ROW_DATA: &str = "RowData";
const OP_ROW_SET_READ: &str = "RowSetRead";
const OP_ROW_SET_TEST: &str = "RowSetTest";
const OP_SEEK_GE: &str = "SeekGE";
const OP_SEEK_GT: &str = "SeekGT";
const OP_SEEK_LE: &str = "SeekLE";
const OP_SEEK_LT: &str = "SeekLT";
const OP_SEEK_ROW_ID: &str = "SeekRowId";
const OP_SEEK_SCAN: &str = "SeekScan";
const OP_SEQUENCE_TEST: &str = "SequenceTest";
const OP_SORTER_NEXT: &str = "SorterNext";
const OP_SORTER_SORT: &str = "SorterSort";
const OP_V_FILTER: &str = "VFilter";
const OP_V_NEXT: &str = "VNext";
const OP_YIELD: &str = "Yield";
const OP_JUMP: &str = "Jump";
const OP_COLUMN: &str = "Column";
const OP_MAKE_RECORD: &str = "MakeRecord";
const OP_INSERT: &str = "Insert";
const OP_IDX_INSERT: &str = "IdxInsert";
const OP_OPEN_PSEUDO: &str = "OpenPseudo";
const OP_OPEN_READ: &str = "OpenRead";
const OP_OPEN_WRITE: &str = "OpenWrite";
const OP_OPEN_EPHEMERAL: &str = "OpenEphemeral";
const OP_OPEN_AUTOINDEX: &str = "OpenAutoindex";
const OP_AGG_FINAL: &str = "AggFinal";
const OP_AGG_STEP: &str = "AggStep";
const OP_FUNCTION: &str = "Function";
const OP_MOVE: &str = "Move";
const OP_COPY: &str = "Copy";
const OP_SCOPY: &str = "SCopy";
const OP_NULL: &str = "Null";
const OP_NULL_ROW: &str = "NullRow";
const OP_INT_COPY: &str = "IntCopy";
const OP_CAST: &str = "Cast";
const OP_STRING8: &str = "String8";
const OP_INT64: &str = "Int64";
const OP_INTEGER: &str = "Integer";
const OP_REAL: &str = "Real";
const OP_NOT: &str = "Not";
const OP_BLOB: &str = "Blob";
const OP_VARIABLE: &str = "Variable";
const OP_COUNT: &str = "Count";
const OP_ROWID: &str = "Rowid";
const OP_NEWROWID: &str = "NewRowid";
const OP_OR: &str = "Or";
const OP_AND: &str = "And";
const OP_BIT_AND: &str = "BitAnd";
const OP_BIT_OR: &str = "BitOr";
const OP_SHIFT_LEFT: &str = "ShiftLeft";
const OP_SHIFT_RIGHT: &str = "ShiftRight";
const OP_ADD: &str = "Add";
const OP_SUBTRACT: &str = "Subtract";
const OP_MULTIPLY: &str = "Multiply";
const OP_DIVIDE: &str = "Divide";
const OP_REMAINDER: &str = "Remainder";
const OP_CONCAT: &str = "Concat";
const OP_RESULT_ROW: &str = "ResultRow";
const OP_HALT: &str = "Halt";

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
struct ColumnType {
    pub datatype: DataType,
    pub nullable: Option<bool>,
}

impl Default for ColumnType {
    fn default() -> Self {
        Self {
            datatype: DataType::Null,
            nullable: None,
        }
    }
}

impl ColumnType {
    fn null() -> Self {
        Self {
            datatype: DataType::Null,
            nullable: Some(true),
        }
    }
}

#[derive(Debug, Clone, Eq, PartialEq)]
enum RegDataType {
    Single(ColumnType),
    Record(Vec<ColumnType>),
    Int(i64),
}

impl RegDataType {
    fn map_to_datatype(&self) -> DataType {
        match self {
            RegDataType::Single(d) => d.datatype,
            RegDataType::Record(_) => DataType::Null, //If we're trying to coerce to a regular Datatype, we can assume a Record is invalid for the context
            RegDataType::Int(_) => DataType::Int,
        }
    }
    fn map_to_nullable(&self) -> Option<bool> {
        match self {
            RegDataType::Single(d) => d.nullable,
            RegDataType::Record(_) => None, //If we're trying to coerce to a regular Datatype, we can assume a Record is invalid for the context
            RegDataType::Int(_) => Some(false),
        }
    }
    fn map_to_columntype(&self) -> ColumnType {
        match self {
            RegDataType::Single(d) => *d,
            RegDataType::Record(_) => ColumnType {
                datatype: DataType::Null,
                nullable: None,
            }, //If we're trying to coerce to a regular Datatype, we can assume a Record is invalid for the context
            RegDataType::Int(_) => ColumnType {
                datatype: DataType::Int,
                nullable: Some(false),
            },
        }
    }
}

#[derive(Debug, Clone, Eq, PartialEq)]
enum CursorDataType {
    Normal(HashMap<i64, ColumnType>),
    Pseudo(i64),
}

impl CursorDataType {
    fn from_sparse_record(record: &HashMap<i64, ColumnType>) -> Self {
        Self::Normal(
            record
                .iter()
                .map(|(&colnum, &datatype)| (colnum, datatype))
                .collect(),
        )
    }

    fn from_dense_record(record: &Vec<ColumnType>) -> Self {
        Self::Normal((0..).zip(record.iter().copied()).collect())
    }

    fn map_to_dense_record(&self, registers: &HashMap<i64, RegDataType>) -> Vec<ColumnType> {
        match self {
            Self::Normal(record) => {
                let mut rowdata = vec![ColumnType::default(); record.len()];
                for (idx, col) in record.iter() {
                    rowdata[*idx as usize] = col.clone();
                }
                rowdata
            }
            Self::Pseudo(i) => match registers.get(i) {
                Some(RegDataType::Record(r)) => r.clone(),
                _ => Vec::new(),
            },
        }
    }

    fn map_to_sparse_record(
        &self,
        registers: &HashMap<i64, RegDataType>,
    ) -> HashMap<i64, ColumnType> {
        match self {
            Self::Normal(c) => c.clone(),
            Self::Pseudo(i) => match registers.get(i) {
                Some(RegDataType::Record(r)) => (0..).zip(r.iter().copied()).collect(),
                _ => HashMap::new(),
            },
        }
    }
}

#[allow(clippy::wildcard_in_or_patterns)]
fn affinity_to_type(affinity: u8) -> DataType {
    match affinity {
        SQLITE_AFF_BLOB => DataType::Blob,
        SQLITE_AFF_INTEGER => DataType::Int64,
        SQLITE_AFF_NUMERIC => DataType::Numeric,
        SQLITE_AFF_REAL => DataType::Float,
        SQLITE_AFF_TEXT => DataType::Text,

        SQLITE_AFF_NONE | _ => DataType::Null,
    }
}

#[allow(clippy::wildcard_in_or_patterns)]
fn opcode_to_type(op: &str) -> DataType {
    match op {
        OP_REAL => DataType::Float,
        OP_BLOB => DataType::Blob,
        OP_AND | OP_OR => DataType::Bool,
        OP_ROWID | OP_COUNT | OP_INT64 | OP_INTEGER => DataType::Int64,
        OP_STRING8 => DataType::Text,
        OP_COLUMN | _ => DataType::Null,
    }
}

fn root_block_columns(
    conn: &mut ConnectionState,
) -> Result<HashMap<i64, HashMap<i64, ColumnType>>, Error> {
    let table_block_columns: Vec<(i64, i64, String, bool)> = execute::iter(
        conn,
        "SELECT s.rootpage, col.cid as colnum, col.type, col.\"notnull\"
         FROM (select * from sqlite_temp_schema UNION select * from sqlite_schema) s
         JOIN pragma_table_info(s.name) AS col
         WHERE s.type = 'table'",
        None,
        false,
    )?
    .filter_map(|res| res.map(|either| either.right()).transpose())
    .map(|row| FromRow::from_row(&row?))
    .collect::<Result<Vec<_>, Error>>()?;

    let index_block_columns: Vec<(i64, i64, String, bool)> = execute::iter(
        conn,
        "SELECT s.rootpage, idx.seqno as colnum, col.type, col.\"notnull\"
         FROM (select * from sqlite_temp_schema UNION select * from sqlite_schema) s
         JOIN pragma_index_info(s.name) AS idx
         LEFT JOIN pragma_table_info(s.tbl_name) as col
           ON col.cid = idx.cid
           WHERE s.type = 'index'",
        None,
        false,
    )?
    .filter_map(|res| res.map(|either| either.right()).transpose())
    .map(|row| FromRow::from_row(&row?))
    .collect::<Result<Vec<_>, Error>>()?;

    let mut row_info: HashMap<i64, HashMap<i64, ColumnType>> = HashMap::new();
    for (block, colnum, datatype, notnull) in table_block_columns {
        let row_info = row_info.entry(block).or_default();
        row_info.insert(
            colnum,
            ColumnType {
                datatype: datatype.parse().unwrap_or(DataType::Null),
                nullable: Some(!notnull),
            },
        );
    }
    for (block, colnum, datatype, notnull) in index_block_columns {
        let row_info = row_info.entry(block).or_default();
        row_info.insert(
            colnum,
            ColumnType {
                datatype: datatype.parse().unwrap_or(DataType::Null),
                nullable: Some(!notnull),
            },
        );
    }

    return Ok(row_info);
}

#[derive(Debug, Clone, PartialEq)]
struct QueryState {
    pub visited: Vec<bool>,
    pub history: Vec<usize>,
    // Registers
    pub r: HashMap<i64, RegDataType>,
    // Rows that pointers point to
    pub p: HashMap<i64, CursorDataType>,
    // Next instruction to execute
    pub program_i: usize,
    // Results published by the execution
    pub result: Option<Vec<(Option<SqliteTypeInfo>, Option<bool>)>>,
}

// Opcode Reference: https://sqlite.org/opcode.html
pub(super) fn explain(
    conn: &mut ConnectionState,
    query: &str,
) -> Result<(Vec<SqliteTypeInfo>, Vec<Option<bool>>), Error> {
    let mut logger = crate::logger::QueryPlanLogger::new(query, conn.log_settings.clone());

    let root_block_cols = root_block_columns(conn)?;
    let program: Vec<(i64, String, i64, i64, i64, Vec<u8>)> =
        execute::iter(conn, &format!("EXPLAIN {}", query), None, false)?
            .filter_map(|res| res.map(|either| either.right()).transpose())
            .map(|row| FromRow::from_row(&row?))
            .collect::<Result<Vec<_>, Error>>()?;
    logger.add_program(program.clone());
    let program_size = program.len();

    let mut states = vec![QueryState {
        visited: vec![false; program_size],
        history: Vec::new(),
        r: HashMap::with_capacity(6),
        p: HashMap::with_capacity(6),
        program_i: 0,
        result: None,
    }];

    let mut result_states = Vec::new();

    while let Some(mut state) = states.pop() {
        while state.program_i < program_size {
            if state.visited[state.program_i] {
                state.program_i += 1;
                //avoid (infinite) loops by breaking if we ever hit the same instruction twice
                break;
            }
            let (_, ref opcode, p1, p2, p3, ref p4) = program[state.program_i];
            state.history.push(state.program_i);

            match &**opcode {
                OP_INIT => {
                    // start at <p2>
                    state.visited[state.program_i] = true;
                    state.program_i = p2 as usize;
                    continue;
                }

                OP_GOTO => {
                    // goto <p2>
                    state.visited[state.program_i] = true;
                    state.program_i = p2 as usize;
                    continue;
                }

                OP_DECR_JUMP_ZERO | OP_ELSE_EQ | OP_EQ | OP_FILTER | OP_FK_IF_ZERO | OP_FOUND
                | OP_GE | OP_GO_SUB | OP_GT | OP_IDX_GE | OP_IDX_GT | OP_IDX_LE | OP_IDX_LT
                | OP_IF | OP_IF_NO_HOPE | OP_IF_NOT | OP_IF_NOT_OPEN | OP_IF_NOT_ZERO
                | OP_IF_NULL_ROW | OP_IF_POS | OP_IF_SMALLER | OP_INCR_VACUUM | OP_IS_NULL
                | OP_IS_NULL_OR_TYPE | OP_LE | OP_LAST | OP_LT | OP_MUST_BE_INT | OP_NE
                | OP_NEXT | OP_NO_CONFLICT | OP_NOT_EXISTS | OP_NOT_NULL | OP_ONCE | OP_PREV
                | OP_PROGRAM | OP_ROW_SET_READ | OP_ROW_SET_TEST | OP_SEEK_GE | OP_SEEK_GT
                | OP_SEEK_LE | OP_SEEK_LT | OP_SEEK_ROW_ID | OP_SEEK_SCAN | OP_SEQUENCE_TEST
                | OP_SORTER_NEXT | OP_SORTER_SORT | OP_V_FILTER | OP_V_NEXT | OP_REWIND => {
                    // goto <p2> or next instruction (depending on actual values)
                    state.visited[state.program_i] = true;

                    let mut branch_state = state.clone();
                    branch_state.program_i = p2 as usize;
                    states.push(branch_state);

                    state.program_i += 1;
                    continue;
                }

                OP_INIT_COROUTINE => {
                    // goto <p2> or next instruction (depending on actual values)
                    state.visited[state.program_i] = true;
                    state.r.insert(p1, RegDataType::Int(p3));

                    if p2 != 0 {
                        state.program_i = p2 as usize;
                    } else {
                        state.program_i += 1;
                    }
                    continue;
                }

                OP_END_COROUTINE => {
                    // jump to p2 of the yield instruction pointed at by register p1
                    state.visited[state.program_i] = true;
                    if let Some(RegDataType::Int(yield_i)) = state.r.get(&p1) {
                        if let Some((_, yield_op, _, yield_p2, _, _)) =
                            program.get(*yield_i as usize)
                        {
                            if OP_YIELD == yield_op.as_str() {
                                state.program_i = (*yield_p2) as usize;
                                state.r.remove(&p1);
                                continue;
                            } else {
                                break;
                            }
                        } else {
                            break;
                        }
                    } else {
                        break;
                    }
                }

                OP_RETURN => {
                    // jump to the instruction after the instruction pointed at by register p1
                    state.visited[state.program_i] = true;
                    if let Some(RegDataType::Int(return_i)) = state.r.get(&p1) {
                        state.program_i = (*return_i + 1) as usize;
                        state.r.remove(&p1);
                        continue;
                    } else {
                        break;
                    }
                }

                OP_YIELD => {
                    // jump to p2 of the yield instruction pointed at by register p1, store prior instruction in p1
                    state.visited[state.program_i] = true;
                    if let Some(RegDataType::Int(yield_i)) = state.r.get_mut(&p1) {
                        let program_i: usize = state.program_i;

                        //if yielding to a yield operation, go to the NEXT instruction after that instruction
                        if program
                            .get(*yield_i as usize)
                            .map(|(_, yield_op, _, _, _, _)| yield_op.as_str())
                            == Some(OP_YIELD)
                        {
                            state.program_i = (*yield_i + 1) as usize;
                            *yield_i = program_i as i64;
                            continue;
                        } else {
                            state.program_i = *yield_i as usize;
                            *yield_i = program_i as i64;
                            continue;
                        }
                    } else {
                        break;
                    }
                }

                OP_JUMP => {
                    // goto one of <p1>, <p2>, or <p3> based on the result of a prior compare
                    state.visited[state.program_i] = true;

                    let mut branch_state = state.clone();
                    branch_state.program_i = p1 as usize;
                    states.push(branch_state);

                    let mut branch_state = state.clone();
                    branch_state.program_i = p2 as usize;
                    states.push(branch_state);

                    let mut branch_state = state.clone();
                    branch_state.program_i = p3 as usize;
                    states.push(branch_state);
                }

                OP_COLUMN => {
                    //Get the row stored at p1, or NULL; get the column stored at p2, or NULL
                    if let Some(record) = state.p.get(&p1).map(|c| c.map_to_sparse_record(&state.r))
                    {
                        if let Some(col) = record.get(&p2) {
                            // insert into p3 the datatype of the col
                            state.r.insert(p3, RegDataType::Single(*col));
                        } else {
                            state
                                .r
                                .insert(p3, RegDataType::Single(ColumnType::default()));
                        }
                    } else {
                        state
                            .r
                            .insert(p3, RegDataType::Single(ColumnType::default()));
                    }
                }

                OP_ROW_DATA => {
                    //Get entire row from cursor p1, store it into register p2
                    if let Some(record) = state.p.get(&p1) {
                        let rowdata = record.map_to_dense_record(&state.r);
                        state.r.insert(p2, RegDataType::Record(rowdata));
                    } else {
                        state.r.insert(p2, RegDataType::Record(Vec::new()));
                    }
                }

                OP_MAKE_RECORD => {
                    // p3 = Record([p1 .. p1 + p2])
                    let mut record = Vec::with_capacity(p2 as usize);
                    for reg in p1..p1 + p2 {
                        record.push(
                            state
                                .r
                                .get(&reg)
                                .map(|d| d.clone().map_to_columntype())
                                .unwrap_or(ColumnType::default()),
                        );
                    }
                    state.r.insert(p3, RegDataType::Record(record));
                }

                OP_INSERT | OP_IDX_INSERT => {
                    if let Some(RegDataType::Record(record)) = state.r.get(&p2) {
                        if let Some(CursorDataType::Normal(row)) = state.p.get_mut(&p1) {
                            // Insert the record into wherever pointer p1 is
                            *row = (0..).zip(record.iter().copied()).collect();
                        }
                    }
                    //Noop if the register p2 isn't a record, or if pointer p1 does not exist
                }

                OP_OPEN_PSEUDO => {
                    // Create a cursor p1 aliasing the record from register p2
                    state.p.insert(p1, CursorDataType::Pseudo(p2));
                }
                OP_OPEN_READ | OP_OPEN_WRITE => {
                    //Create a new pointer which is referenced by p1, take column metadata from db schema if found
                    if p3 == 0 {
                        if let Some(columns) = root_block_cols.get(&p2) {
                            state
                                .p
                                .insert(p1, CursorDataType::from_sparse_record(columns));
                        } else {
                            state
                                .p
                                .insert(p1, CursorDataType::Normal(HashMap::with_capacity(6)));
                        }
                    } else {
                        state
                            .p
                            .insert(p1, CursorDataType::Normal(HashMap::with_capacity(6)));
                    }
                }

                OP_OPEN_EPHEMERAL | OP_OPEN_AUTOINDEX => {
                    //Create a new pointer which is referenced by p1
                    state.p.insert(
                        p1,
                        CursorDataType::from_dense_record(&vec![ColumnType::null(); p2 as usize]),
                    );
                }

                OP_VARIABLE => {
                    // r[p2] = <value of variable>
                    state.r.insert(p2, RegDataType::Single(ColumnType::null()));
                }

                OP_FUNCTION => {
                    // r[p1] = func( _ )
                    match from_utf8(p4).map_err(Error::protocol)? {
                        "last_insert_rowid(0)" => {
                            // last_insert_rowid() -> INTEGER
                            state.r.insert(
                                p3,
                                RegDataType::Single(ColumnType {
                                    datatype: DataType::Int64,
                                    nullable: Some(false),
                                }),
                            );
                        }

                        _ => logger.add_unknown_operation(program[state.program_i].clone()),
                    }
                }

                OP_NULL_ROW => {
                    // all columns in cursor X are potentially nullable
                    if let Some(CursorDataType::Normal(ref mut cursor)) = state.p.get_mut(&p1) {
                        for ref mut col in cursor.values_mut() {
                            col.nullable = Some(true);
                        }
                    }
                    //else we don't know about the cursor
                }

                OP_AGG_STEP => {
                    //assume that AGG_FINAL will be called
                    let p4 = from_utf8(p4).map_err(Error::protocol)?;

                    if p4.starts_with("count(") {
                        // count(_) -> INTEGER
                        state.r.insert(
                            p3,
                            RegDataType::Single(ColumnType {
                                datatype: DataType::Int64,
                                nullable: Some(false),
                            }),
                        );
                    } else if let Some(v) = state.r.get(&p2).cloned() {
                        // r[p3] = AGG ( r[p2] )
                        state.r.insert(p3, v);
                    }
                }

                OP_AGG_FINAL => {
                    let p4 = from_utf8(p4).map_err(Error::protocol)?;

                    if p4.starts_with("count(") {
                        // count(_) -> INTEGER
                        state.r.insert(
                            p1,
                            RegDataType::Single(ColumnType {
                                datatype: DataType::Int64,
                                nullable: Some(false),
                            }),
                        );
                    } else if let Some(v) = state.r.get(&p2).cloned() {
                        // r[p3] = AGG ( r[p2] )
                        state.r.insert(p3, v);
                    }
                }

                OP_CAST => {
                    // affinity(r[p1])
                    if let Some(v) = state.r.get_mut(&p1) {
                        *v = RegDataType::Single(ColumnType {
                            datatype: affinity_to_type(p2 as u8),
                            nullable: v.map_to_nullable(),
                        });
                    }
                }

                OP_COPY | OP_MOVE | OP_SCOPY | OP_INT_COPY => {
                    // r[p2] = r[p1]
                    if let Some(v) = state.r.get(&p1).cloned() {
                        state.r.insert(p2, v);
                    }
                }

                OP_INTEGER => {
                    // r[p2] = p1
                    state.r.insert(p2, RegDataType::Int(p1));
                }

                OP_BLOB | OP_COUNT | OP_REAL | OP_STRING8 | OP_ROWID | OP_NEWROWID => {
                    // r[p2] = <value of constant>
                    state.r.insert(
                        p2,
                        RegDataType::Single(ColumnType {
                            datatype: opcode_to_type(&opcode),
                            nullable: Some(false),
                        }),
                    );
                }

                OP_NOT => {
                    // r[p2] = NOT r[p1]
                    if let Some(a) = state.r.get(&p1).cloned() {
                        state.r.insert(p2, a);
                    }
                }

                OP_NULL => {
                    // r[p2..p3] = null
                    let idx_range = if p2 < p3 { p2..=p3 } else { p2..=p2 };

                    for idx in idx_range {
                        state.r.insert(idx, RegDataType::Single(ColumnType::null()));
                    }
                }

                OP_OR | OP_AND | OP_BIT_AND | OP_BIT_OR | OP_SHIFT_LEFT | OP_SHIFT_RIGHT
                | OP_ADD | OP_SUBTRACT | OP_MULTIPLY | OP_DIVIDE | OP_REMAINDER | OP_CONCAT => {
                    // r[p3] = r[p1] + r[p2]
                    match (state.r.get(&p1).cloned(), state.r.get(&p2).cloned()) {
                        (Some(a), Some(b)) => {
                            state.r.insert(
                                p3,
                                RegDataType::Single(ColumnType {
                                    datatype: if matches!(a.map_to_datatype(), DataType::Null) {
                                        b.map_to_datatype()
                                    } else {
                                        a.map_to_datatype()
                                    },
                                    nullable: match (a.map_to_nullable(), b.map_to_nullable()) {
                                        (Some(a_n), Some(b_n)) => Some(a_n | b_n),
                                        (Some(a_n), None) => Some(a_n),
                                        (None, Some(b_n)) => Some(b_n),
                                        (None, None) => None,
                                    },
                                }),
                            );
                        }

                        (Some(v), None) => {
                            state.r.insert(
                                p3,
                                RegDataType::Single(ColumnType {
                                    datatype: v.map_to_datatype(),
                                    nullable: None,
                                }),
                            );
                        }

                        (None, Some(v)) => {
                            state.r.insert(
                                p3,
                                RegDataType::Single(ColumnType {
                                    datatype: v.map_to_datatype(),
                                    nullable: None,
                                }),
                            );
                        }

                        _ => {}
                    }
                }

                OP_RESULT_ROW => {
                    // output = r[p1 .. p1 + p2]
                    state.visited[state.program_i] = true;
                    state.result = Some(
                        (p1..p1 + p2)
                            .map(|i| {
                                let coltype = state.r.get(&i);

                                let sqltype =
                                    coltype.map(|d| d.map_to_datatype()).map(SqliteTypeInfo);
                                let nullable =
                                    coltype.map(|d| d.map_to_nullable()).unwrap_or_default();

                                (sqltype, nullable)
                            })
                            .collect(),
                    );

                    let program_history: Vec<(i64, String, i64, i64, i64, Vec<u8>)> =
                        state.history.iter().map(|i| program[*i].clone()).collect();
                    logger.add_result((program_history, state.result.clone()));
                    result_states.push(state.clone());
                }

                OP_HALT => {
                    break;
                }

                _ => {
                    // ignore unsupported operations
                    // if we fail to find an r later, we just give up
                    logger.add_unknown_operation(program[state.program_i].clone());
                }
            }

            state.visited[state.program_i] = true;
            state.program_i += 1;
        }
    }

    let mut output: Vec<Option<SqliteTypeInfo>> = Vec::new();
    let mut nullable: Vec<Option<bool>> = Vec::new();

    while let Some(state) = result_states.pop() {
        // find the datatype info from each ResultRow execution
        if let Some(result) = state.result {
            let mut idx = 0;
            for (this_type, this_nullable) in result {
                if output.len() == idx {
                    output.push(this_type);
                } else if output[idx].is_none()
                    || matches!(output[idx], Some(SqliteTypeInfo(DataType::Null)))
                {
                    output[idx] = this_type;
                }

                if nullable.len() == idx {
                    nullable.push(this_nullable);
                } else if let Some(ref mut null) = nullable[idx] {
                    //if any ResultRow's column is nullable, the final result is nullable
                    if let Some(this_null) = this_nullable {
                        *null |= this_null;
                    }
                } else {
                    nullable[idx] = this_nullable;
                }
                idx += 1;
            }
        }
    }

    let output = output
        .into_iter()
        .map(|o| o.unwrap_or(SqliteTypeInfo(DataType::Null)))
        .collect();

    Ok((output, nullable))
}

#[test]
fn test_root_block_columns_has_types() {
    use crate::sqlite::SqliteConnectOptions;
    use std::str::FromStr;
    let conn_options = SqliteConnectOptions::from_str("sqlite::memory:").unwrap();
    let mut conn = super::EstablishParams::from_options(&conn_options)
        .unwrap()
        .establish()
        .unwrap();

    assert!(execute::iter(
        &mut conn,
        r"CREATE TABLE t(a INTEGER PRIMARY KEY, b_null TEXT NULL, b TEXT NOT NULL);",
        None,
        false
    )
    .unwrap()
    .next()
    .is_some());
    assert!(
        execute::iter(&mut conn, r"CREATE INDEX i1 on t (a,b_null);", None, false)
            .unwrap()
            .next()
            .is_some()
    );
    assert!(execute::iter(
        &mut conn,
        r"CREATE UNIQUE INDEX i2 on t (a,b_null);",
        None,
        false
    )
    .unwrap()
    .next()
    .is_some());
    assert!(execute::iter(
        &mut conn,
        r"CREATE TABLE t2(a INTEGER NOT NULL, b_null NUMERIC NULL, b NUMERIC NOT NULL);",
        None,
        false
    )
    .unwrap()
    .next()
    .is_some());
    assert!(execute::iter(
        &mut conn,
        r"CREATE INDEX t2i1 on t2 (a,b_null);",
        None,
        false
    )
    .unwrap()
    .next()
    .is_some());
    assert!(execute::iter(
        &mut conn,
        r"CREATE UNIQUE INDEX t2i2 on t2 (a,b);",
        None,
        false
    )
    .unwrap()
    .next()
    .is_some());

    let table_block_nums: HashMap<String, i64> = execute::iter(
        &mut conn,
        r"select name, rootpage from sqlite_master",
        None,
        false,
    )
    .unwrap()
    .filter_map(|res| res.map(|either| either.right()).transpose())
    .map(|row| FromRow::from_row(row.as_ref().unwrap()))
    .collect::<Result<HashMap<_, _>, Error>>()
    .unwrap();

    let root_block_cols = root_block_columns(&mut conn).unwrap();

    assert_eq!(6, root_block_cols.len());

    //prove that we have some information for each table & index
    for blocknum in table_block_nums.values() {
        assert!(root_block_cols.contains_key(blocknum));
    }

    //prove that each block has the correct information
    {
        let blocknum = table_block_nums["t"];
        assert_eq!(
            ColumnType {
                datatype: DataType::Int64,
                nullable: Some(true) //sqlite primary key columns are nullable unless declared not null
            },
            root_block_cols[&blocknum][&0]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Text,
                nullable: Some(true)
            },
            root_block_cols[&blocknum][&1]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Text,
                nullable: Some(false)
            },
            root_block_cols[&blocknum][&2]
        );
    }

    {
        let blocknum = table_block_nums["i1"];
        assert_eq!(
            ColumnType {
                datatype: DataType::Int64,
                nullable: Some(true) //sqlite primary key columns are nullable unless declared not null
            },
            root_block_cols[&blocknum][&0]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Text,
                nullable: Some(true)
            },
            root_block_cols[&blocknum][&1]
        );
    }

    {
        let blocknum = table_block_nums["i2"];
        assert_eq!(
            ColumnType {
                datatype: DataType::Int64,
                nullable: Some(true) //sqlite primary key columns are nullable unless declared not null
            },
            root_block_cols[&blocknum][&0]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Text,
                nullable: Some(true)
            },
            root_block_cols[&blocknum][&1]
        );
    }

    {
        let blocknum = table_block_nums["t2"];
        assert_eq!(
            ColumnType {
                datatype: DataType::Int64,
                nullable: Some(false)
            },
            root_block_cols[&blocknum][&0]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Null,
                nullable: Some(true)
            },
            root_block_cols[&blocknum][&1]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Null,
                nullable: Some(false)
            },
            root_block_cols[&blocknum][&2]
        );
    }

    {
        let blocknum = table_block_nums["t2i1"];
        assert_eq!(
            ColumnType {
                datatype: DataType::Int64,
                nullable: Some(false)
            },
            root_block_cols[&blocknum][&0]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Null,
                nullable: Some(true)
            },
            root_block_cols[&blocknum][&1]
        );
    }

    {
        let blocknum = table_block_nums["t2i2"];
        assert_eq!(
            ColumnType {
                datatype: DataType::Int64,
                nullable: Some(false)
            },
            root_block_cols[&blocknum][&0]
        );
        assert_eq!(
            ColumnType {
                datatype: DataType::Null,
                nullable: Some(false)
            },
            root_block_cols[&blocknum][&1]
        );
    }
}