logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! ASN.1 `SET OF` support.

use crate::{
    arrayvec, ArrayVec, Decodable, DecodeValue, Decoder, DerOrd, Encodable, EncodeValue, Encoder,
    ErrorKind, FixedTag, Length, Result, Tag,
};
use core::cmp::Ordering;

#[cfg(feature = "alloc")]
use {alloc::vec::Vec, core::slice};

/// ASN.1 `SET OF` backed by an array.
///
/// This type implements an append-only `SET OF` type which is stack-based
/// and does not depend on `alloc` support.
// TODO(tarcieri): use `ArrayVec` when/if it's merged into `core`
// See: https://github.com/rust-lang/rfcs/pull/2990
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct SetOf<T, const N: usize>
where
    T: Clone + DerOrd,
{
    inner: ArrayVec<T, N>,
}

impl<T, const N: usize> SetOf<T, N>
where
    T: Clone + DerOrd,
{
    /// Create a new [`SetOf`].
    pub fn new() -> Self {
        Self {
            inner: ArrayVec::default(),
        }
    }

    /// Add an element to this [`SetOf`].
    ///
    /// Items MUST be added in lexicographical order according to the
    /// [`DerOrd`] impl on `T`.
    pub fn add(&mut self, new_elem: T) -> Result<()> {
        // Ensure set elements are lexicographically ordered
        if let Some(last_elem) = self.inner.last() {
            if new_elem.der_cmp(last_elem)? != Ordering::Greater {
                return Err(ErrorKind::SetOrdering.into());
            }
        }

        self.inner.add(new_elem)
    }

    /// Get the nth element from this [`SetOf`].
    pub fn get(&self, index: usize) -> Option<&T> {
        self.inner.get(index)
    }

    /// Iterate over the elements of this [`SetOf`].
    pub fn iter(&self) -> SetOfIter<'_, T> {
        SetOfIter {
            inner: self.inner.iter(),
        }
    }

    /// Is this [`SetOf`] empty?
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Number of elements in this [`SetOf`].
    pub fn len(&self) -> usize {
        self.inner.len()
    }
}

impl<T, const N: usize> Default for SetOf<T, N>
where
    T: Clone + DerOrd,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T, const N: usize> DecodeValue<'a> for SetOf<T, N>
where
    T: Clone + Decodable<'a> + DerOrd,
{
    fn decode_value(decoder: &mut Decoder<'a>, length: Length) -> Result<Self> {
        let end_pos = (decoder.position() + length)?;
        let mut result = Self::new();

        while decoder.position() < end_pos {
            result.add(decoder.decode()?)?;
        }

        if decoder.position() != end_pos {
            decoder.error(ErrorKind::Length { tag: Self::TAG });
        }

        Ok(result)
    }
}

impl<'a, T, const N: usize> EncodeValue for SetOf<T, N>
where
    T: 'a + Clone + Decodable<'a> + Encodable + DerOrd,
{
    fn value_len(&self) -> Result<Length> {
        self.iter()
            .fold(Ok(Length::ZERO), |len, elem| len + elem.encoded_len()?)
    }

    fn encode_value(&self, encoder: &mut Encoder<'_>) -> Result<()> {
        for elem in self.iter() {
            elem.encode(encoder)?;
        }

        Ok(())
    }
}

impl<'a, T, const N: usize> FixedTag for SetOf<T, N>
where
    T: Clone + Decodable<'a> + DerOrd,
{
    const TAG: Tag = Tag::Set;
}

/// Iterator over the elements of an [`SetOf`].
#[derive(Clone, Debug)]
pub struct SetOfIter<'a, T> {
    /// Inner iterator.
    inner: arrayvec::Iter<'a, T>,
}

impl<'a, T> Iterator for SetOfIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        self.inner.next()
    }
}

/// ASN.1 `SET OF` backed by a [`Vec`].
///
/// This type implements an append-only `SET OF` type which is heap-backed
/// and depends on `alloc` support.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
#[derive(Clone, Debug, Default, Eq, PartialEq, PartialOrd, Ord)]
pub struct SetOfVec<T>
where
    T: Clone + DerOrd,
{
    inner: Vec<T>,
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> SetOfVec<T>
where
    T: Clone + DerOrd,
{
    /// Create a new [`SetOfVec`].
    pub fn new() -> Self {
        Self {
            inner: Vec::default(),
        }
    }

    /// Add an element to this [`SetOfVec`].
    ///
    /// Items MUST be added in lexicographical order according to the
    /// [`DerOrd`] impl on `T`.
    pub fn add(&mut self, new_elem: T) -> Result<()> {
        // Ensure set elements are lexicographically ordered
        if let Some(last_elem) = self.inner.last() {
            if new_elem.der_cmp(last_elem)? != Ordering::Greater {
                return Err(ErrorKind::SetOrdering.into());
            }
        }

        self.inner.push(new_elem);
        Ok(())
    }

    /// Get the nth element from this [`SetOfVec`].
    pub fn get(&self, index: usize) -> Option<&T> {
        self.inner.get(index)
    }

    /// Iterate over the elements of this [`SetOfVec`].
    pub fn iter(&self) -> slice::Iter<'_, T> {
        self.inner.iter()
    }

    /// Is this [`SetOfVec`] empty?
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Number of elements in this [`SetOfVec`].
    pub fn len(&self) -> usize {
        self.inner.len()
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<'a, T> DecodeValue<'a> for SetOfVec<T>
where
    T: Clone + Decodable<'a> + DerOrd,
{
    fn decode_value(decoder: &mut Decoder<'a>, length: Length) -> Result<Self> {
        let end_pos = (decoder.position() + length)?;
        let mut result = Self::new();

        while decoder.position() < end_pos {
            result.add(decoder.decode()?)?;
        }

        if decoder.position() != end_pos {
            decoder.error(ErrorKind::Length { tag: Self::TAG });
        }

        Ok(result)
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<'a, T> EncodeValue for SetOfVec<T>
where
    T: 'a + Clone + Decodable<'a> + Encodable + DerOrd,
{
    fn value_len(&self) -> Result<Length> {
        self.iter()
            .fold(Ok(Length::ZERO), |len, elem| len + elem.encoded_len()?)
    }

    fn encode_value(&self, encoder: &mut Encoder<'_>) -> Result<()> {
        for elem in self.iter() {
            elem.encode(encoder)?;
        }

        Ok(())
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<T> FixedTag for SetOfVec<T>
where
    T: Clone + DerOrd,
{
    const TAG: Tag = Tag::Set;
}